
Investigating Partner Diversification
Methods in Cooperative Multi-agent

Deep Reinforcement Learning

Rujikorn Charakorn1, Poramate Manoonpong1,2, and Nat Dilokthanakul1(B)

1 Bio-inspired Robotics & Neural Engineering Lab, School of Information Science &
Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand

{rujikorn.c s19,poramate.m,natd pro}@vistec.ac.th
2 Embodied Artificial Intelligence and Neurorobotics Lab, The Mærsk Mc-Kinney

Møller Institute, University of Southern Denmark, Odense, Denmark

Abstract. Overfitting to learning partners is a known problem, in multi-
agent reinforcement learning (MARL), due to the co-evolution of learn-
ing agents. Previous works explicitly add diversity to learning partners
for mitigating this problem. However, since there are many approaches
for introducing diversity, it is not clear which one should be used under
what circumstances. In this work, we clarify the situation and reveal that
widely used methods such as partner sampling and population-based
training are unreliable at introducing diversity under fully cooperative
multi-agent Markov decision process. We find that generating pre-trained
partners is a simple yet effective procedure to achieve diversity. Finally,
we highlight the impact of diversified learning partners on the general-
ization of learning agents using cross-play and ad-hoc team performance
as evaluation metrics.

Keywords: Coordination · Deep reinforcement learning · Multi-agent
system · Generalization

1 Introduction

Working with novel partners is one of the goals of artificial intelligence [20].
This becomes crucial for the agent and its partners to achieve an objective when
the agent is deployed to interact with unseen partners in the real world. For
instance, an autonomous car must be able to handle various driver types on the
road, including other autonomous vehicles and humans, to avoid accidents and
to safely reach the intended destination. Deep reinforcement learning (DRL)
has been used to solve complex tasks and domains in both single-agent and
multi-agent environments. However, in fully cooperative games, agents that are
trained together tend to exploit the common knowledge observed during training
culminating in them, thus unable to coordinate with unseen agents [4,13].

Achieving robust agents is not trivial especially when the agents produced
by DRL are very brittle [12]. A commonly used approach for alleviating this
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1333, pp. 395–402, 2020.
https://doi.org/10.1007/978-3-030-63823-8_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63823-8_46&domain=pdf
https://doi.org/10.1007/978-3-030-63823-8_46


396 R. Charakorn et al.

problem involves exposing the learning agent to a diverse set of partners during
the training period. However, there are various methods for adding behavioral
diversity to learning partners. In this work, we demonstrate that the methods
widely used in competitive games do not apply to cooperative counterparts using
a simplified two-player version of the Overcooked game. Cross-play [10] and ad-
hoc team performance [20] are used to evaluate agents with unseen partners
where agents have no prior joint experience and have to act without additional
learning. This paper makes the following contributions:

1. We find that vanilla self-play, partner sampling and, surprisingly, population-
based training (PBT) have the same diversity problem. This explains why
PBT agents are not more robust than self-play agents and cannot play well
with humans as reported in a recent work [4].

2. We illustrate that creating diversity by generating pre-trained partners is a
simple but effective solution for fully cooperative environments.

2 Related Work

The ad-hoc teamwork problem has been proposed by Stone et al. [20] and,
since then, has been tackled using classical methods [2,3]. Recent work involv-
ing MARL such as [5,9,17] focus on agent coordination whereby the agents are
trained together to achieve the desired goal. Test-time performance (i.e., ad-hoc
team), however, is largely ignored by methods proposed recently, which only
consider the training performance. Many works [1,3,6,7] explicitly add diver-
sity of training partners to improve the generalization of agents. Although they
have the same goal of obtaining a diverse set of training partners, the methods
they use are largely different. It is not clear which method is applicable in what
circumstances since there is no documented comparison.

3 Materials and Methods

3.1 Overcooked as an Experimental Platform

The experiments in this paper are based on a simplified Overcooked game [4] to
test the agent’s ability to work with another agent (partner) under a fully coop-
erative environment. Here, we give a brief explanation of the game environment.
There are only two players in this environment. The objective of the game is
to cook and serve dishes of soup. There multiple collaborative subgoals before
serving the soup. Doing so gives all players a reward of 20. This game is fully
cooperative, meaning that all players share the total joint reward of the episode.
Both players are supposed to work together in this environment, thus learning
to coordinate and collaborate with their partner is crucial to achieving a high
score. Figure 1 shows the layout of the game used in the experiments.



Investigating Partner Diversification Methods in Coop. MADRL 397

3.2 Diversification of Learning Partners

In competitive settings, [1] uses partner sampling (i.e., playing with uniformly
sampled past versions of the partner) to help stabilize training. Instead of uni-
formly sampling from past versions, [18] samples learning partners based on the
quality score. Furthermore, [16] use population-based training. Similarly, [21]
introduces prioritized fictitious self-play (PFSP). On the other hand, in coop-
erative settings, various approaches have been used to acquire diversity during
training, including using domain knowledge to generate diverse training partners
[3,6], existing datasets [14,15] or a set of pre-trained agents [7].

Population-Based Training (PBT). PBT is a method for optimizing hyperpa-
rameters through concurrent learning agents by replacing weaker performers
with the mutated hyperparameters of stronger ones along with their current
(neural network) parameters. In each game, a learner πθ and several partners π−i,
which are sampled from a population P , generate game trajectories. The learner’s
goal is to optimize the expected return, G(πi, π−i) := Eπ−i∼P [

∑h
t=0 γtr|πi, π−i],

where the policy πi is played using the learner policy πθ.

Self-play. The main idea of the algorithm is that the current learning agent will
play with clones of itself to generate learning examples and then optimize their
policies accordingly. Particularly, the learner’s policy πθ act as both πi and π−i.
This approach does not apply diversity explicitly to learning partners since it
exclusively learns from the current policy.

Partner Sampling. Instead of playing with the current policy like self-play, the
policy will be saved periodically every k iterations, keeping only the last n ver-
sions. The learner then samples which partner to learn with from past versions
of the policy. Effectively replacing the population P with past n versions of the
policy.

Pre-trained Partners. This approach simply uses pre-trained self-play agents as
partners to introduce diversity since different runs of a reinforcement learning
algorithm usually yield different agent behaviors [8,11]. In similarity to partner
sampling, it changes the population P with a set of pre-trained agents. The
overall training scheme for each approach is shown in Fig. 2.

Onions

Dishes

Cooking 
Pot

Serving
Location

Player 1Player 2

Fig. 1. The layout of Overcooked game used in the experiments.



398 R. Charakorn et al.

Fig. 2. Overview of each training procedure. The learning agent uses the trajectories
to update its policy after playing with a partner. The static policy parameters will not
be updated. The sampling operation is used when there is a set of possible agents to
choose from.

4 Experiments

In this section, we investigate the source and impact of diversity using previously
applied method. All methods are evaluated under the Overcooked environment.
We consider the following hypotheses:

1. Does partner sampling introduce diversity to the learning partner?
2. Does PBT introduce diversity to the learning partner?
3. Does learning with a set of (diverse) pre-trained agents aid the generalization

of learning agents?

There are four types of agents: self-play (SP), partner sampling (SPpast),
population-based training (PBT), and agents that learn with pre-trained agents
(PT). All agents in the experiments have the same network architecture and
state representation, based on [4] and optimized with Proximal Policy Opti-
mization [19].

To test the agents’ generalization and diversity, the first evaluation method
in this section will be cross-play, in which agents from different runs of the
same type play together. This is a proxy of the ad-hoc performance, to establish
whether or not the agents can play with their own type with the only deviation
being the random seed. We note that the self-play scores reflect the competence of
the agents while the cross-play scores show compatibility and diversity between
agents. If the agents cannot play with their own type (potentially the minimum
requirement of a robust agent), we also believe they do not generalize to other
kinds of agents. However, if they manage to do well under cross-play, we then
use a separate hold-out set of agents to test their ad-hoc performance.

4.1 Experimental Results

Self-play (SP). We evaluate SP agents using cross-play, resulting in the cross-play
matrix shown in Fig. 3a. Since no diversity is explicitly introduced during training,



Investigating Partner Diversification Methods in Coop. MADRL 399

Table 1. Cross-play and self-play performance. The cross-play score is a mean of the
off-diagonal entries (across populations in the case of PBT) while the self-play score is
a mean of diagonal entries (within a population in the case of PBT) in each respective
cross-play matrix as shown in Fig. 3.

Agent type Cross-play Self-play

Vanilla self-play (SP) 18.52 ± 42.38 190.06 ± 16.44

Partner sampling (SPpast) 28.88 ± 46.64 186.80 ± 8.61

Population-based training (PBT) 25.27 ± 56.22 206.36 ± 25.79

Pre-trained partners: random seed (PTseeds) 112.51 ± 28.33 98.78 ± 39.04

Pre-trained partners: hyperparameters (PTdiverse) 175.67 ± 16.18 177.94 ± 13.05

SP agent SPpast agent PBT agent

Fig. 3. Cross-play matrix. The average game scores from agents of the same type. The
x and y axes represent the first and second player, respectively. The diagonal shows
the self-play performance of that particular agent. Off-diagonal entries visualize the
cross-play performance. Each entry is evaluated by calculating the empirical episode
reward mean of 100 game trajectories using a corresponding agent pair (ax,ay).

as expected, the cross-play scores of SP agents are relatively low compared to their
self-play scores (see Table 1). This type of agent serves as our baseline for the cross-
play performance. We note that the cross-play matrix shows that different runs
produce diverse but incompatible behaviors.

Partner Sampling (SPpast.) This type of agent is identical to the SP except that
it learns with uniformly sampled past versions of itself. While this method is
widely used in previous competitive multi-agent environments, it fails to produce
robust agents under cooperative environments. We further examine as to why
this is the case. To this end, we visualize the cross-play performance of a single
training run of this type, as shown in Fig. 4. We found that past versions of the
same agents can play nicely with other past versions of themselves. This shows
the lack of diversity in this training method since the past versions have similar
behavior and are thus able to play with other versions of themselves but have
low cross-play scores.



400 R. Charakorn et al.

Fig. 4. Cross-play with past versions of an SPpast agent. The x and y axes represent
the first and second player respectively. Agents from iteration [100,200,...800] represent
as [1,2,...,8] in both x and y axes.

Population-Based Training (PBT). Here, we implement a round-robin PBT set-
ting where, in an iteration, each agent in the population plays all agents, includ-
ing itself, then updates its own policy just like the self-play type. After updating
the policy, we replace the worst agent according to the cross-play score within the
population by mutating the hyperparameters of the best performer. In this experi-
ment, a population consists of five learning agents and there are a total of six differ-
ent populations (training runs). As can be observed from Fig. 3c, agents from the
same population are able to play together quite well (squares along the diagonal)
but, surprisingly, their cross-play performance is similar to SP and SPpast agents.
This result shows that PBT is not a reliable source of diversity, at least in the case
of fully cooperative environments.

Using Pre-trained Agents as Learning Partners. In this experiment, we use
a set of pre-trained self-play agents as learning partners during the training
period. There are two types of pre-trained agents: (i) differ only in random seeds
(PTseeds); and (ii) differ in various hyperparameters (PTdiverse). Both types
have 10 agents as training partners and another 10 hold-out test agents for the
ad-hoc team. The cross-play scores of this experiment are visualized separately
in Fig. 5 for clarity. It is clear from Table 1 that PT agents have significantly
higher cross-play scores than other agent types. Confirming the fact that learning
with a diverse set of (pre-trained) agents results in greater robustness, although
the self-play performance of PTseeds suffers. This also shows the significance
of the diversity of behaviors generated by various sets of hyperparameters since
both the self-play and cross-play scores of PTdiverse are significantly higher than
PTseeds. Finally, we evaluate the PT agents with the unseen (pre-trained) part-
ners under the ad-hoc team setting. The PTdiverse agents perform better in both
types of test partners as shown in Table 2.



Investigating Partner Diversification Methods in Coop. MADRL 401

Table 2. Ad-hoc team performance of PT agents. Each run is evaluated with 10 test
agents over 100 game trajectories. The s.e.m is calculated from 10 different runs for
each type of agent.

Agent type Random seed test Diverse test

PTseeds 62.22 (s.e.m 15.89) 62.39 (s.e.m 10.18)

PTdiverse 86.73 (s.e.m 15.44) 98.36 (s.e.m 16.33)

Pre-trained: seeds Pre-trained: diverse

Fig. 5. Cross-play matrix of PT agents. Both PTseeds and PTdiverse have significantly
better cross-play performance than displayed in other previous methods.

5 Conclusion

In this work, we show that learning with a diverse set of partners has a pos-
itive impact on the generalization of agents. We further investigate how such
diversity can be achieved using various approaches. We find that widely used
methods in competitive games do not reliably introduce diversity in cooperative
games including PBT. The results suggest that obtaining partner diversity is
not trivial. Then, we use separate training runs to produce a set of pre-trained
partners, demonstrating that employing a diverse set of partners is better than
just varying the random seeds in terms of generalization (both cross-play and
ad-hoc team performance). Finally, the results of this paper highlight the impor-
tance of choosing the appropriate diversification method to ensure the required
diversity for the desired task. We hypothesize that the diversity of partners will
play a significant role in the robustness of agents in more complex tasks and big-
ger scale multi-agent environments. In future work, we would like to investigate
further into these scenarios.

References

1. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity
via multi-agent competition. arXiv preprint arXiv:1710.03748 (2017)

http://arxiv.org/abs/1710.03748


402 R. Charakorn et al.

2. Barrett, S., Rosenfeld, A., Kraus, S., Stone, P.: Making friends on the fly: cooper-
ating with new teammates. Artif. Intell. 242, 132–171 (2017)

3. Canaan, R., Gao, X., Togelius, J., Nealen, A., Menzel, S.: Generating and
adapting to diverse ad-hoc cooperation agents in Hanabi. arXiv preprint
arXiv:2004.13710(2020)

4. Carroll, M., et al.: On the utility of learning about humans for human-AI coor-
dination. In: Advances in Neural Information Processing Systems, pp. 5175–5186
(2019)

5. Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfac-
tual multi-agent policy gradients. In: Thirty-Second AAAI Conference on Artificial
Intelligence (2018)

6. Ghosh, A., Tschiatschek, S., Mahdavi, H., Singla, A.: Towards deployment of robust
AI agents for human-machine partnerships. arXiv preprint arXiv:1910.02330 (2019)

7. Grover, A., Al-Shedivat, M., Gupta, J.K., Burda, Y., Edwards, H.: Learning policy
representations in multiagent systems. arXiv preprint arXiv:1806.06464 (2018)

8. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep
reinforcement learning that matters. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

9. Hu, H., Foerster, J.N.: Simplified action decoder for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1912.02288 (2019)

10. Hu, H., Lerer, A., Peysakhovich, A., Foerster, J.: “Other-play” for zero-shot coor-
dination. arXiv preprint arXiv:2003.02979 (2020)

11. Islam, R., Henderson, P., Gomrokchi, M., Precup, D.: Reproducibility of bench-
marked deep reinforcement learning tasks for continuous control. arXiv preprint-
arXiv:1708.04133 (2017)

12. Justesen, N., Torrado, R.R., Bontrager, P., Khalifa, A., Togelius, J., Risi, S.: Illu-
minating generalization in deep reinforcement learning through procedural level
generation. arXiv preprint arXiv:1806.10729 (2018)

13. Lanctot, M., et al.: A unified game-theoretic approach to multiagent reinforcement
learning. In: Advances in Neural Information Processing Systems, pp. 4190–4203
(2017)

14. Le, H.M., Yue, Y., Carr, P., Lucey, P.: Coordinated multi-agent imitation learning.
In: Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1995–2003. JMLR. org (2017)

15. Li, M.G., Jiang, B., Zhu, H., Che, Z., Liu, Y.: Generative attention networks for
multi-agent behavioral modeling. In: AAAI, pp. 7195–7202 (2020)

16. Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess, N., Graepel, T.: Emergent
coordination through competition. arXiv preprint arXiv:1902.07151 (2019)

17. Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O.P., Mordatch, I.: Multi-agent
actor-critic for mixed cooperative-competitive environments. In: Advances in Neu-
ral Information Processing Systems, pp. 6379–6390 (2017)

18. OpenAI, Berner, C., et al.: Dota 2 with large scale deep reinforcement learning.
arXiv preprint arXiv:1912.06680 (2019)

19. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

20. Stone, P., Kaminka, G.A., Kraus, S., Rosenschein, J.S.: Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In: Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence (2010)

21. Vinyals, O., et al.: Grandmaster level in Starcraft II using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

http://arxiv.org/abs/2004.13710(2020
http://arxiv.org/abs/1910.02330
http://arxiv.org/abs/1806.06464
http://arxiv.org/abs/1912.02288
http://arxiv.org/abs/2003.02979
http://arxiv.org/abs/1806.10729
http://arxiv.org/abs/1902.07151
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1707.06347

	Investigating Partner Diversification Methods in Cooperative Multi-agent Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Overcooked as an Experimental Platform
	3.2 Diversification of Learning Partners

	4 Experiments
	4.1 Experimental Results

	5 Conclusion
	References




